Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Tours university CNRS IFCE

Neuroendocrinologie Moleculaire de la Reproduction

Neuroanatomical connections between kisspeptin neurones and somatostatin neurones in female and male rat hypothalamus: a possible involvement of SSTR1 in kisspeptin release.

2018 Mar 15:e12593. doi: 10.1111/jne.12593.

logo J Neuroendocrinol.
© J Neuroendocrinol.
Dufourny L Delmas O Teixeira-Gomes AP Decourt C Sliwowska JH6.

Somatostatin (SST) a neuropeptide involved in the central modulation of several physiological functions, is co-distributed in the same hypothalamic areas as kisspeptin (KP), the most potent secretagogue of the gonadotropin-releasing hormone (GnRH) secretion known to date. As SST infused intracerebroventricularly (icv) evoked a potent inhibition of GnRH release, we explored neuroanatomical relationships between KP and SST populations in male and female rats. For that, intact males and ovariectomised oestradiol-replaced females were killed and their brains processed in order to simultaneously detect KP, SST and synapsin, a marker for synapses. We observed numerous appositions of KP on SST neurones both in female and male arcuate nucleus (ARC) and ventromedial hypothalamus. A large association between SST terminals and KP neurones at the level of the pre-optic area (POA) was also observed in female rats and in a more limited frame in males. Finally, most KP neurones from the ARC showed SST appositions in both sexes. To determine whether SST could affect KP cell activity, we assessed whether SST receptors (SSTR) were present on KP neurones in the ARC. We also looked for the presence of SSTR1 and SSTR2A in the brain of male rats. Brains were processed through a sequential double immunocytochemistry in order to detect KP and SSTR1 or KP and SSTR2A. We observed overlapping distributions of immunoreactive neurones for SSTR1 and KP and counted approximately one third of KP neurones with SSTR1. In contrast, neurones labelled for SSTR2A or KP were often juxtaposed in the ARC and the occurrence of double-labelled neurones was sporadic (<5%). These results suggest that SST action on KP neurones would pass mainly through SSTR1 at the level of the ARC. This article is protected by copyright. All rights reserved.

Link to PubMed

See also